Monte Carlo sampling for Bayesian linear regression with an unknown (nonparametric) transformation. A g-prior is assumed for the regression coefficients.
Usage
sblm(
y,
X,
X_test = X,
psi = length(y),
laplace_approx = TRUE,
approx_g = FALSE,
nsave = 1000,
ngrid = 100,
verbose = TRUE
)
Arguments
- y
n x 1
response vector- X
n x p
matrix of predictors- X_test
n_test x p
matrix of predictors for test data; default is the observed covariatesX
- psi
prior variance (g-prior)
- laplace_approx
logical; if TRUE, use a normal approximation to the posterior in the definition of the transformation; otherwise the prior is used
- approx_g
logical; if TRUE, apply large-sample approximation for the transformation
- nsave
number of Monte Carlo simulations
- ngrid
number of grid points for inverse approximations
- verbose
logical; if TRUE, print time remaining
Value
a list with the following elements:
coefficients
the posterior mean of the regression coefficientsfitted.values
the posterior predictive mean at the test pointsX_test
post_theta
:nsave x p
samples from the posterior distribution of the regression coefficientspost_ypred
:nsave x n_test
samples from the posterior predictive distribution at test pointsX_test
post_g
:nsave
posterior samples of the transformation evaluated at the uniquey
valuesmodel
: the model fit (here,sblm
)
as well as the arguments passed in.
Details
This function provides fully Bayesian inference for a
transformed linear model using Monte Carlo (not MCMC) sampling.
The transformation is modeled as unknown and learned jointly
with the regression coefficients (unless approx_g
= TRUE, which then uses
a point approximation). This model applies for real-valued data, positive data, and
compactly-supported data (the support is automatically deduced from the observed y
values).
The results are typically unchanged whether laplace_approx
is TRUE/FALSE;
setting it to TRUE may reduce sensitivity to the prior, while setting it to FALSE
may speed up computations for very large datasets.
Examples
# \donttest{
# Simulate some data:
dat = simulate_tlm(n = 100, p = 5, g_type = 'step')
y = dat$y; X = dat$X # training data
y_test = dat$y_test; X_test = dat$X_test # testing data
hist(y, breaks = 25) # marginal distribution
# Fit the semiparametric Bayesian linear model:
fit = sblm(y = y, X = X, X_test = X_test)
#> [1] "3 seconds remaining"
#> [1] "2 seconds remaining"
#> [1] "1 seconds remaining"
#> [1] "Total time: 3 seconds"
names(fit) # what is returned
#> [1] "coefficients" "fitted.values" "post_theta" "post_ypred"
#> [5] "post_g" "model" "y" "X"
#> [9] "X_test" "psi" "approx_g" "sigma_epsilon"
# Note: this is Monte Carlo sampling, so no need for MCMC diagnostics!
# Evaluate posterior predictive means and intervals on the testing data:
plot_pptest(fit$post_ypred, y_test,
alpha_level = 0.10) # coverage should be about 90%
#> [1] 0.907
# Check: correlation with true coefficients
cor(dat$beta_true[-1],
coef(fit)[-1]) # excluding the intercept
#> [1] 0.9663776
# Summarize the transformation:
y0 = sort(unique(y)) # posterior draws of g are evaluated at the unique y observations
plot(y0, fit$post_g[1,], type='n', ylim = range(fit$post_g),
xlab = 'y', ylab = 'g(y)', main = "Posterior draws of the transformation")
temp = sapply(1:nrow(fit$post_g), function(s)
lines(y0, fit$post_g[s,], col='gray')) # posterior draws
lines(y0, colMeans(fit$post_g), lwd = 3) # posterior mean
# Add the true transformation, rescaled for easier comparisons:
lines(y,
scale(dat$g_true)*sd(colMeans(fit$post_g)) + mean(colMeans(fit$post_g)), type='p', pch=2)
legend('bottomright', c('Truth'), pch = 2) # annotate the true transformation
# Posterior predictive checks on testing data: empirical CDF
y0 = sort(unique(y_test))
plot(y0, y0, type='n', ylim = c(0,1),
xlab='y', ylab='F_y', main = 'Posterior predictive ECDF')
temp = sapply(1:nrow(fit$post_ypred), function(s)
lines(y0, ecdf(fit$post_ypred[s,])(y0), # ECDF of posterior predictive draws
col='gray', type ='s'))
lines(y0, ecdf(y_test)(y0), # ECDF of testing data
col='black', type = 's', lwd = 3)
# }