Skip to contents
-
Fz_fun()
- Compute the latent data CDF
-
SSR_gprior()
- Compute the sum-squared-residuals term under Zellner's g-prior
-
all_subsets()
- Compute all subsets of a set
-
bb()
- Bayesian bootstrap posterior sampler for the CDF
-
bgp_bc()
- Bayesian Gaussian processes with a Box-Cox transformation
-
blm_bc()
- Bayesian linear model with a Box-Cox transformation
-
bqr()
- Bayesian quantile regression
-
bsm_bc()
- Bayesian spline model with a Box-Cox transformation
-
computeTimeRemaining()
- Estimate the remaining time in the MCMC based on previous samples
-
concen_hbb()
- Posterior sampling algorithm for the HBB concentration hyperparameters
-
contract_grid()
- Grid contraction
-
g_bc()
- Box-Cox transformation
-
g_fun()
- Compute the transformation
-
g_inv_approx()
- Approximate inverse transformation
-
g_inv_bc()
- Inverse Box-Cox transformation
-
hbb()
- Hierarchical Bayesian bootstrap posterior sampler
-
plot_pptest()
- Plot point and interval predictions on testing data
-
rank_approx()
- Rank-based estimation of the linear regression coefficients
-
sampleFastGaussian()
- Sample a Gaussian vector using the fast sampler of BHATTACHARYA et al.
-
sbgp()
- Semiparametric Bayesian Gaussian processes
-
sblm()
- Semiparametric Bayesian linear model
-
sblm_hs()
- Semiparametric Bayesian linear model with horseshoe priors for high-dimensional data
-
sblm_modelsel()
- Model selection for semiparametric Bayesian linear regression
-
sblm_ssvs()
- Semiparametric Bayesian linear model with stochastic search variable selection
-
sbqr()
- Semiparametric Bayesian quantile regression
-
sbsm()
- Semiparametric Bayesian spline model
-
simulate_tlm()
- Simulate a transformed linear model
-
sir_adjust()
- Post-processing with importance sampling
-
square_stabilize()
- Numerically stabilize the squared elements
-
uni.slice()
- Univariate Slice Sampler from Neal (2008)